首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   961篇
  免费   56篇
  2022年   3篇
  2021年   8篇
  2019年   6篇
  2018年   17篇
  2017年   5篇
  2016年   17篇
  2015年   31篇
  2014年   25篇
  2013年   76篇
  2012年   52篇
  2011年   41篇
  2010年   30篇
  2009年   22篇
  2008年   53篇
  2007年   44篇
  2006年   62篇
  2005年   55篇
  2004年   52篇
  2003年   46篇
  2002年   43篇
  2001年   32篇
  2000年   45篇
  1999年   25篇
  1998年   18篇
  1997年   7篇
  1996年   4篇
  1995年   9篇
  1994年   7篇
  1993年   10篇
  1992年   25篇
  1991年   19篇
  1990年   14篇
  1989年   16篇
  1988年   5篇
  1987年   5篇
  1986年   13篇
  1985年   6篇
  1984年   6篇
  1983年   7篇
  1982年   4篇
  1980年   3篇
  1979年   7篇
  1978年   4篇
  1975年   7篇
  1974年   2篇
  1973年   7篇
  1972年   3篇
  1971年   2篇
  1968年   5篇
  1967年   3篇
排序方式: 共有1017条查询结果,搜索用时 500 毫秒
91.
The plant growth-retardant uniconazole (UNI), a triazole inhibitor of gibberellin biosynthetic enzyme (CYP701A), inhibits multiple P450 enzymes including ABA 8′-hydroxylase (CYP707A), a key enzyme in ABA catabolism. Azole P450 inhibitors bind to a P450 active site by both coordinating to the heme-iron atom via sp2 nitrogen and interacting with surrounding protein residues through a lipophilic region. We hypothesized that poor selectivity of UNI may result from adopting a distinct conformation and orientation for different active sites. Based on this hypothesis, we designed and synthesized novel UNI analogs with a disubstituted azole ring (DSI). These analogs were expected to have higher selectivity than UNI because the added functional group may interact with the active site to restrict orientation of the molecule in the active site. DSI-505ME and DSI-505MZ, which have an imidazolyl group with a methyl 5-acrylate, strongly inhibited recombinant CYP707A3, with no growth-retardant effect.  相似文献   
92.
During tumorigenesis, cells acquire immortality in association with the development of genomic instability. However, it is still elusive how genomic instability spontaneously generates during the process of tumorigenesis. Here, we show that precancerous DNA lesions induced by oncogene acceleration, which induce situations identical to the initial stages of cancer development, trigger tetraploidy/aneuploidy generation in association with mitotic aberration. Although oncogene acceleration primarily induces DNA replication stress and the resulting lesions in the S phase, these lesions are carried over into the M phase and cause cytokinesis failure and genomic instability. Unlike directly induced DNA double-strand breaks, DNA replication stress-associated lesions are cryptogenic and pass through cell-cycle checkpoints due to limited and ineffective activation of checkpoint factors. Furthermore, since damaged M-phase cells still progress in mitotic steps, these cells result in chromosomal mis-segregation, cytokinesis failure and the resulting tetraploidy generation. Thus, our results reveal a process of genomic instability generation triggered by precancerous DNA replication stress.  相似文献   
93.
The relationship between the allelopathic p-menthane-3,8-diols and the ontogenetic age in Eucalyptus citriodora was elucidated. The diols in the soil from a Eucalyptus grove were analysed by mass chromatography. Germination and growth inhibitory activities of the cis-diol against several higher plants were examined.  相似文献   
94.
Sphingolipids are major lipid constituents of the eukaryotic plasma membrane. Without certain sphingolipids, cells and/or embryos cannot survive, indicating that sphingolipids possess important physiological functions that are not substituted for by other lipids. One such role may be signaling. Recent studies have revealed that some sphingolipid metabolites, such as long-chain bases (LCBs; sphingosine (Sph) in mammals), long-chain base 1-phosphates (LCBPs; sphingosine 1-phosphate (S1P) in mammals), ceramide (Cer), and ceramide 1-phosphate (C1P), act as signaling molecules. The addition of phosphate groups to LCB/Sph and Cer generates LCBP/S1P and C1P, respectively. These phospholipids exhibit completely different functions than those of their precursors. In this review, we describe recent advances in understanding the functions of LCBP/S1P and C1P in mammals and in the yeast Saccharomyces cerevisiae. Since LCB/Sph, LCBP/S1P, Cer, and C1P are mutually convertible, regulation of not only the total amount of the each lipid but also of the overall balance in cellular levels is important. Therefore, we describe in detail their metabolic pathways, as well as the genes involved in each reaction.  相似文献   
95.
To clarify the molecular basis of severe acute respiratory syndrome coronavirus (SARS-CoV) adaptation to different host species, we serially passaged SARS-CoV in rat angiotensin-converting enzyme 2 (ACE2)-expressing cells. After 15 passages, the virus (Rat-P15) came to replicate effectively in rat ACE2-expressing cells. Two amino acid substitutions in the S2 region were found on the Rat-P15 S gene. Analyses of the infectivity of the pseudotype-bearing S protein indicated that the two substitutions in the S2 region, especially the S950F substitution, were responsible for efficient infection. Therefore, virus adaptation to different host species can be induced by amino acid substitutions in the S2 region.  相似文献   
96.
Evidence is presented that RSK1 (ribosomal S6 kinase 1), a downstream target of MAPK (mitogen-activated protein kinase), directly phosphorylates nNOS (neuronal nitric oxide synthase) on Ser847 in response to mitogens. The phosphorylation thus increases greatly following EGF (epidermal growth factor) treatment of rat pituitary tumour GH3 cells and is reduced by exposure to the MEK (MAPK/extracellular-signal-regulated kinase kinase) inhibitor PD98059. Furthermore, it is significantly enhanced by expression of wild-type RSK1 and antagonized by kinase-inactive RSK1 or specific reduction of endogenous RSK1. EGF treatment of HEK-293 (human embryonic kidney) cells, expressing RSK1 and nNOS, led to inhibition of NOS enzyme activity, associated with an increase in phosphorylation of nNOS at Ser847, as is also the case in an in vitro assay. In addition, these phenomena were significantly blocked by treatment with the RSK inhibitor Ro31-8220. Cells expressing mutant nNOS (S847A) proved resistant to phosphorylation and decrease of NOS activity. Within minutes of adding EGF to transfected cells, RSK1 associated with nNOS and subsequently dissociated following more prolonged agonist stimulation. EGF-induced formation of the nNOS-RSK1 complex was significantly decreased by PD98059 treatment. Treatment with EGF further revealed phosphorylation of nNOS on Ser847 in rat hippocampal neurons and cerebellar granule cells. This EGF-induced phosphorylation was partially blocked by PD98059 and Ro31-8220. Together, these data provide substantial evidence that RSK1 associates with and phosphorylates nNOS on Ser847 following mitogen stimulation and suggest a novel role for RSK1 in the regulation of nitric oxide function in brain.  相似文献   
97.
98.
99.
In this study, in addition to the karyotype analysis, the chromosomal distributions of 5 S and 18 S rDNAs, and the Arabidopsis-type (T3AG3) telomeric sequences were detected by means of fluorescence in situ hybridization (FISH) to promote the information of chromosomal organization and evolution in the cultivated lettuce and its wild relatives, L. sativa, L. serriola, L. saligna and L. virosa. The karyotype analysis revealed the dissimilarity between L. virosa and the remaining species. In all four Lactuca species studied, one 5 S rDNA and two 18 S rDNA loci were detected. The simultaneous FISH of 5 S and 18 S rDNAs revealed that both rDNA loci of L. sativa, L. serriola and L. saligna were identical, however, that of L. virosa was different from the other species. These analyses indicate the closer relationships between L. sativa/L. serriola and L. saligna rather than L. virosa. Arabidopsis-type telomeric sequences were detected at both ends of their chromatids of all chromosomes not in the other regions. This observation suggests the lack of telomere-mediated chromosomal rearrangements among the Lactuca chromosomes.  相似文献   
100.
(-)-6-[2-[4-(3-Fluorophenyl)-4-hydroxy-1-piperidinyl]-1-hydroxyethyl]-3,4-dihydro-2(1H)-quinolinone was identified as an orally active NR2B-subunit selective N-methyl-d-aspartate (NMDA) receptor antagonist. It has very high selectivity for NR2B subunits containing NMDA receptors versus the HERG-channel inhibition (therapeutic index=4200 vs NR2B binding IC(50)). This compound has improved pharmacokinetic properties compared to the prototype CP-101,606.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号